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The hierarchy of the Mori-Zwanzing continued fraction representation has been studied by expressing the
memory function in terms of its lower-order memory function. The short-time behavior of the memory func-
tion is exactly incorporated through sum rules by scaling its lower-order memory function. This scheme
provides a self-consistent evaluation of the memory function and hence of the time correlation function.
Expressions obtained for transport coefficients have been found to be exactly the same as those obtained by
Joslin and Gray@Mol. Phys.58, 789 ~1986!#. The approach has been applied to study the velocity autocorre-
lation function of the Lennard-Jones fluids and a good agreement with molecular dynamics data is obtained for
dense fluids.@S1063-651X~96!11709-8#

PACS number~s!: 51.10.1y, 66.10.2x

I. INTRODUCTION

The time correlation function~TCF! is a fundamental
quantity for the study of transport properties of a fluid state
of matter, as all the macroscopic transport coefficients can be
related to the TCF of an appropriate variable through the
Green-Kubo formulas. At present, sufficient information is
available about time evolution of various TCFs. This has
been possible because of the combined efforts made by per-
forming neutron scattering experiments, computer simula-
tions, and theoretical calculations. Theoretically, TCFs are
generally evaluated using Mori’s equation of motion which
expresses the TCF in terms of first order memory function
~MF!. Application of Mori’s equation of motion@1# to first
order MF will express its time evolution in terms of the
second order MF. Following this procedure, one can gener-
ate a chain of non-Markovian type coupled equations. This
approach, in fact, reduces the problem of the calculation of
TCF to the calculation of any of the MF. However, this
formalism @2,3# has an advantage that one can develop phe-
nomenological theories@4,5# for the calculation of MF and
can still preserve some of the exact properties of the TCF.
Microscopically, if one expresses the MF as a sum of the
binary collision contribution and a term reflecting the long-
time behavior, the latter part can be calculated using the
kinetic theory@6# or the mode coupling@5# approximation
whereas, the first term can be obtained microscopically by
the method recently developed by Pathak, Ranganathan, and
Johnson @7#. During the last decade, many researchers
@8–10# have replaced the second term by its TCF itself or the
quadratic of it or their linear combinations. This procedure
has its relevance in the study of supercooled liquids and
glass transitions. More recently, the third stage MF has been
written @11# as a linear combination of first and second order
MFs and the TCF itself. In the present work, we propose to
express the~n11!th stage MF in terms of thenth stage MF
alone. The short-time contribution to MF is taken care of by
scaling thenth stage MF through the use of sum rules. Thus
this will avoid expressing the MF as a sum of two terms
which are important at two different time scales. Our ap-
proach provides a self-consistent evaluation of the MF and,

hence, of the TCF. Expressions obtained for the generalized
transport coefficients have been found to be exactly the same
as those obtained by Joslin and Gray~JG! @12# by employing
a different kind of approach. Here, it may be mentioned that
in the JG approach one can not determine the time depen-
dence of the TCF.

The procedure proposed here has been applied to the
study of the velocity autocorrelation function~VACF! of
Lennard-Jones~LJ! fluids at a few densities and tempera-
tures. It is found that our method provides a good agreement
with the computer simulation results for the time develop-
ment of VACF of dense fluids.

The paper is organized as follows: In Sec. II the theoreti-
cal formalism is presented. Results and discussion are given
in Sec. III, and the conclusion in Sec. IV.

II. THEORETICAL FORMALISM

The generalized transport coefficientt can be written as a
time integral of an appropriate time correlation functionC(t)
through the Green-Kubo relation@2# which is given as

t5KE
0

`

C~ t !dt, ~1!

whereK is a thermodynamic constant. The time evolution of
C(t) can be obtained by using Mori’s@1# equation of motion
given as

]

]t
C~ t !52E

0

t

M1~ t2t8!C~ t8!dt8, ~2!

whereM1(t) is the first order MF. In order to calculateC(t)
from the above equation the fundamental theoretical quantity
to be calculated isM1(t). The calculation ofM1(t) is a
complicated task due to the appearance of a projection op-
erator in its definition. However, it follows from the proce-
dure used in deriving Eq.~2! that M1(t) also satisfies an
equation similar to Eq.~2!. A generalization of this proce-
dure leads to

PHYSICAL REVIEW E OCTOBER 1996VOLUME 54, NUMBER 4

541063-651X/96/54~4!/3652~5!/$10.00 3652 © 1996 The American Physical Society



]

]t
Mn~ t !52E

0

t

Mn11~ t2t8!Mn~ t8!dt8, n51,2,3,...,

~3!

whereMn(t) is the nth order MF. We define the Fourier-
Laplace transformC̃~v! of C(t) as

C̃~v!5 i E
0

`

dt exp~ ivt !C~ t !. ~4!

Taking the Fourier-Laplace transform of Eqs.~2! and~3!, we
obtain the continued fraction representation ofC̃~v! given as

C̃~v!52
C~ t50!

v1M̃1~v!
, ~5a!

M̃n~v!52
dn

v1M̃n11~v!
, n51,2,3,..., ~5b!

wheredn5Mn(t50), are called Mori coefficients which are
related to the frequency sum rules~up to 2nth order! of the
spectral function of the time correlation function. In order to
calculateC̃~v! from Eq. ~5! it is necessary to close the con-
tinued fraction at some stage. One of the procedures to close
the hierarchy is to choose a phenomenological form for the
lower-order MFs@M1(t) or M2(t)#. Secondly, one can de-
velop approximate microscopic theories within the kinetic or
mode coupling approaches. In these approaches, the MF is
expressed as a sum of two parts: the first part reflecting the
short-time behavior and the second dominating at longer
times. Recently, it has been shown@11# that the third order
MF may be expressed as a linear combination of its lower-
order MFs and the time correlation function itself. In the
present work, we propose to write the~n11!th stage MF in
terms of the scalednth stage MF only. This certainly reduces
the number of variables required to study the time evolution
of TCF. Our proposal is given as

Mn11~ t !5AnMn~ant !, ~6!

whereAn andan are the two parameters to be determined.
Equation~6! also implies that the functional form of the MF
at two adjacent stages is the same at any time. For example,
if Mn(t) is exponential in time then Eq.~6! implies that
Mn11(t) is also exponential in time, though with a different
decay constant.

The parameterAn is easily calculable from Eq.~6! at t50
and we obtain

An5
Mn11~ t50!

Mn~ t50!
5

dn11

dn
. ~7!

The Taylor series expansion of any MF [Mn(t)] is given as
@13#

Mn~ t !5dnS 12
t2dn11

2!
1••• D . ~8!

Using this equation for the expansion of Eq.~6! on both
sides and comparing the coefficients oft2, we obtain

an5H dn12

dn11
J 1/2. ~9!

Thus we see that Eq.~6! incorporates Mori coefficients up to
dn12 and, hence, it satisfies the sum rules of TCF up to
~2n14!th order. Taking the Fourier-Laplace transform of
Eq. ~6!, we obtain

M̃n11~v!5 iAnE
0

`

Mn~ant !exp~ ivt ! dt. ~10!

After a change of variable in the integral in the above equa-
tion, we obtain

M̃n11~v!5
An

an
Mn~v/an!. ~11!

Substituting the above equation in~5b!, we obtain

M̃n~v!52
dn

v1~An /an!M̃n~v/an!
. ~12!

Equation ~12! can be solved self-consistently forM̃n~v!.
OnceM̃n~v! is determined,C̃~v! is readily calculable from
Eq. ~5a!. Using Eqs.~1! and ~4!, one can obtain the relation

t~n!52 iKC̃~0!, ~13!

wheren is the stage where approximation~6! is to be em-
ployed. From Eqs.~5! and ~13! we obtaint(n) for two adja-
cent stages of continued fraction given as

t~2n21!5 iK
d0d2•••d2n22

d1d3•••d2n23M̃2n21~0!
, n.1 ~14!

t~2n22!5 iK
d0d2•••d2n22M̃2n22~0!

d1d3•••d2n23
, n.1 . ~15!

Equation~12! at v50 provides

M̃n~0!5 idnH dn12

dn11
3 J 1/4. ~16!

Substituting Eq.~16! in Eqs.~14! and ~15!, we obtain

t~2n21!5p~2n!H 1

d2n11d2n
J 1/4 ~17!

and

t~2n22!5p~2n!H d2n21

d2n
3 J 1/4, ~18!

where

p~2n!5K
d0d2•••d2n

d1d3•••d2n21
. ~19!

Expressions~17! and~18! can be used to calculate the trans-
port coefficients by knowing the frequency sum rules of the
spectral function ofC(t). Here, it may be noted that Eqs.
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~17! and ~18! are exactly the same as those obtained by JG
by taking the geometric mean of the transport coefficients
obtained at two adjacent stages of the continued fraction.
However, unlike in our method, in the JG approach one was
not able to obtain the time dependence of the correlation
function. The procedure developed above is quite general
and can be applied to calculate any space-time correlation
function of the fluid by knowing the frequency sum rules.
Exact expressions for the sum rules up to sixth order of the
VACF and up to fourth order for the stress and energy cur-
rent density autocorrelations are now available in the litera-
ture @14#. These involve pair potential and the static correla-
tion functions up to five particles. The three and higher static
correlation contributions to the sum rules have been ex-
pressed in terms of pair contributions by using low-order
decoupling approximations. It is noted that the use of decou-
pling approximations does not introduce any significant error
in the numerical estimates of the sum rules, as has been
judged by comparing the results with the computer simula-
tion evaluation of sum rules of the VACF@14#, stress corre-
lation function @14#, and current correlation functions
@15,16#, except at the triple point. In fact, it is the availability
of the sum rules which makes the formalism useful.

III. RESULTS AND DISCUSSION

Since we knowdn up ton53 for the VACF from theory
@14# as well as from computer experiments@17# for the LJ

fluids, so in this section we use the formalism developed
above to calculate the time development of VACF for the
case whenn51 which sets

M2~ t !5A1M1~a1t !. ~20!

Writing M̃1(v)5M̃18(v)1 iM̃ 19(v), we obtain from Eq.~12!

M̃18~v!52

d1H v1
A1

a1
M̃18~v/a1!J

Fv1
A1

a1
M̃18~v/a1!G21FA1

a1
M̃19~v/a1!G2 ,

~21!

M̃19~v!5

d1H A1

a1
M̃19~v/a1!J

Fv1
A1

a1
M̃18~v/a1!G21FA1

a1
M̃19~v/a1!G2 .

~22!

The two parametersA1 anda1 are determined from Eqs.~7!
and ~9! with dn taken from our earlier work@14#. Equations
~21! and ~22! are solved simultaneously in a self-consistent
manner as follows: By choosing an initial guess for
M̃18(v/a1) and M̃19(v/a1) we calculate M̃18(v) and
M̃19(v) from Eqs. ~21! and ~22!, respectively.M̃18(v/a1)

FIG. 1. Variation of the
normalized VACF c(t) with
time t!5t(«/ms2)1/2 obtained
for four thermodynamic states
of LJ fluids. Solid lines are our
results, whereas full circles
represent MD data. The dotted
line is the result obtained when
dn are taken from MD simula-
tions.
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andM̃19(v/a1) are then calculated by using a spline interpo-
lation, asa1 in the present case is always greater than 1. The
results thus obtained are used to generate a new set of
M̃18(v) and M̃19(v). The process is repeated until the two
successive iterations yield the same results within a tolerance
of 0.01%. Further, it is noted that the final results for
M̃18(v) and M̃19(v) do not depend on the initial guess for
these and the solution was obtained after about 25 iterations
for the densities and temperatures investigated here. Defining
the power spectrum of VACFf ~v! as

f ~v!52C̃9~v!52E
0

`

cos~vt !C~ t !dt, ~23!

with

C̃9~v!5
M̃19~v!

$v1M̃18~v!%21$M̃19~v!%2
. ~24!

The VACF can be obtained fromf ~v! as

C~ t !5
1

p E
0

`

cos~vt ! f ~v!dv. ~25!

Results obtained for normalizedc(t) for four thermody-
namic states are shown in Fig. 1 as solid lines. The solid
circles represent the molecular dynamics~MD! results of Lee
and Chung@17#. It can be seen from Fig. 1 that our results
are in reasonably good agreement with the simulation data
for the four thermodynamic states which are chosen to rep-
resent a wide range of fluid. It is seen that our results show
backscattering effects at triple point~T*5kBt/«50.778 and
r*5rs 350.85, wheres and« are two parameters of the LJ
fluid!. The agreement of our results~shown as a dotted line!
with MD data ofc(t) is further improved if we use the MD
values ofdn at triple point. Here, it may be noted that our
theoretical calculations ofdn involve the use of superposition
and a low order decoupling approximation for the triplet and
quadruplet correlation functions, respectively, which have
been found to show maximum deviation from MD values
near the triple point. Further, it can be noted from Fig. 1 that
our approach providesc(t) in close agreement with the
simulation results only up tot*50.2. It implies that our
method does not predict the correct higher order sum rules
particularly for gases. In order to see the behavior of MF
obtained in our method, we plot normalizedM1(t) in Fig. 2
near the triple point. The MD results of Kushick and Berne
@18# are shown there as solid circles. The dotted line is the
result when sum rules are taken from the MD data. From Fig.
2, it can be seen that the agreement with the MD data and the
dotted line is very good. Thus our method provides an inter-
pretation of MD results for bothM1(t) and c(t) near the
triple point.

For dilute gas one expectsc(t) to decay exponentially, as
the molecular chaos approximation is valid for dilute gases;
therefore the corresponding first order MF is ad function in
time. However, our method assumes that the functional form
of the two adjacent MFs are the same, which is clearly not
the case for very dilute gas. This implies that our approach is
not suitable for the evaluation of self-diffusion coefficients

of very dilute gases. It was found in our earlier work@14#
that the deviation of the calculated self-diffusion coefficient
from the computer simulation data increases with a decrease
in density. Thus we conclude that our approach is quite suc-
cessful in predicting the time dependence of TCF and, hence,
for the self-diffusion coefficient of the dense fluids only. The
values of the shear viscosity and thermal conductivity ob-
tained from this procedure, which provides the same expres-
sions for transport coefficients as obtained by JG, are also
found to be in reasonable agreement over a wide range of
fluid as had earlier been reported in our work@14# and in the
work of Heyes and Powles@19#.

IV. CONCLUSION

In this paper we have proposed a method of expressing
the MF in terms of its lower order MF. The short-time be-
havior is taken care of by scaling the lower-order MF
whereas, the long-time behavior of the two adjacent MFs has
been assumed to be similar. This provides a self-consistent
evaluation of the MF and, hence, of the TCF. The scaling
parameter is determined so as to satisfy the sum rules of the
spectral function of the TCF. The intermediate and long-time
behaviors are determined self-consistently. Thus the method
avoids writing the MF as a sum of two terms, which are
important at two different time scales. Here, it may be noted
that recently Larsson@20# has argued that the binary collision
term reflecting short-time dynamics may not be separable
from the recollision term which is important only at long
times. However, at present there exists no work in which
both contributions have been calculated microscopically for
fluids interacting via the continuous interaction potential and,
hence, needs more investigation.

Expressions obtained for transport coefficients are found
to be exactly the same as those obtained by JG by employing
a different approach. In addition to this, our approach is suit-
able for determining the time development of any space-time

FIG. 2. Variation of the normalized MF with time
t*5t(«/ms2)1/2. Solid lines are our results, whereas full circles
represent MD results. The dotted line is the result whendn are taken
from MD simulations.
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correlation function by knowing the corresponding sum rules
which require interatomic potential as only input. As an ap-
plication, the results are obtained for the time development
of the VACF and MF. It is found that our approach provides
a good interpretation of the MD data, except near the critical
point of the LJ fluids.
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